

NDIA - Gun & Ammunition Symposium and Exhibition

SBIR Phase II Grant

"Gun Tube Liner Erosion and Wear Protection"

- Robert F. Lowey Prin. Investigator, TPL Inc.
- Sponsored by Drs. R. Reeber and D. Stepp, ARO

Barrel Armor for Future Gun Systems Robert F. Lowey Senior Engineer and Program Manager: TPL Inc.

Phase I SBIR

"Advanced Method for Manufacturing Erosion Resistant Gun Barrels"

Funded by the Army Research Office and Sponsored by Dr. Robert Reeber, ARO

Phase I SBIR results:

- Developed a Unique Explosive
- Demonstrated Ta Cladding in 120 MM Smoothbore Tubes

Phase II SBIR Objectives

- Transfer 120 mm cladding technology to25 mm gun barrels and...
- Demonstrate feasibility of refractory metal clads in gun barrels by fabricating and field testing to failure a 25 mm gun barrel

TPL

Phase II

Development of explosive formulation for small diameter bores

Development of method for cladding long L/D tubes

Excellent Bond Strength

- 3 point bend tests
- Pull out test

Guided Bend Tests

TPL

Tailorable Explosive Formulation

- Variable energy input for:
- Different metals & thicknesses

New waveform

Early Interphase

Old waveform

Control waveform and interphase alloy creation

Other Phase II Developments

■ Thin-wall Cladding

Implosive Cladding - Penetrator Rods

■ Bi-metallic Clads

Late Program Re-Direction

- Original Partner had IRAD Funding Shortfall that Would Not Allow for Testing as Planned
- Alternative Plan Developed with ARL & NSWC
 - Utilize Scrap Bushmaster Barrels
 - Drs. Reeber & Stepp
 - NSWC will Fund Testing at ATC
 - Roger Ellis
 - ARL will Provide M919 Ammunition
 - Dr. Jonathan Montgomery

Test Objectives

- To Test the Erosion Resistance of Tantalum with the Most Erosive Ammunition Available
- Demonstrate the Bond Strength of Explosively Clad Bore Liners by Firing to Destruction

- Smoothbore Design Selected to Keep Focus
 on Test Objectives: Erosion Resistance and Bond Strength
 - **No-Twist Rifled Design Added to Assure**
- Proper Sabot Confinement for Functionality of M919 ammunition
- Design Criteria from Dr. J. Montgomery ARL

Gun Tube Blank	
	■ O
Cladded Gun Tube Blank (Heat Treated after Clad?)	- 0
Cladded Gun Tube Machined Tapered	∍
Cladded Gun Tube	
Bored & Rifled (Bore Nitrided?)	

Explosive Cladding <u>should</u> Occur Early in Barrel Manufacturing Process

Not Possible Utilizing Existing Barrels

- Rifling Honed Out to ~ 27.15mm (1.069")
- Tantalum Clad Approximately 1.02mm (0.040")
- Smoothbore Design: Tantalum Honed Down to Wall Thickness of .8mm (0.031")
- Rifled Design: Double Clad
 - Groove Ta Thickness: .54mm (0.021")
 - Land Ta Thickness: 1.06mm (0.042")

Test Barrel Fabrication

Ares Inc. Selected for Barrel Honing and Rifling Broaching

Severe Time Restraints Limit Oppor-

■ tunities for Learning Curve for Machining Tantalum

Endurance Test Ammunition

M919 (APFSDS-T)
Lot No. ADJ91D365-002

HES9053 Propellant Flame Temp of 3692 K

ATC Obtained 1,985
Rounds from Primex
for Tests

TPL.

Endurance Firing Sequence

Cycle B Firing Schedule, 150 rounds/Cycle IAW TECOM 1-WE-100-BUS-050

Tantalum Clad 25mm Barrels
Tested March 26-31, 2001
at
ATC, Aberdeen Proving Grounds

Test Results

- Smoothbore Design:
 - Fired 1,385 Rounds
 - No Significant Increase in Dispersion
 - **■** Barrel Still Considered Serviceable

Test Results

- **Smoothbore Design:**
 - No sign of Tantalum Flaking Off
 - Except Where Undercut by Eroded Gunsteel
 - Tantalum Exhibits Heat Checking and Cracking (some severe)
 - No Dimensional Change in 300 Rnds

Smoothbore Test Results

Smoothbore Bore Wear/Erosion Diameters M919 Ammunition

Test Results

- Rifled Design:
 - Fired 600 Rounds
 - No Significant Increase in Dispersion
 - **■** Barrel Still Considered Serviceable

Test Results

- Rifled Design:
 - Double Clad Appears to Have Held Together Well
 - No sign of Tantalum Flaking Off
 - Bore Wear Data Comparison with APG Tube No. H12373 (1991) ...

TPL

Rifled Design Test Results

Bore Wear/Erosion Diameters. Comparison: Ta Clad (No.C) vs. Std. Nitrided Bushmaster (Tube No.H12373) with M919 Ammunition

- Nominal 0 Rnds
- Ta Clad 300 Rnds
- Ta Clad 600 Rnds
- Std Bush 229 Rnds

Post Firing Analysis Plans

- Bisect Test Barrels and Section into Specimens
- Unfired Reserve Smoothbore and Cut-offs from Test Barrels Available for Comparison
 - Microscopic Examinations of Interface and Boundary Conditions, Erosion Features, Etc
 - **Electron Microprobe Compositional Anaysis**
 - Micro-Hardness Studies

Post Firing Analysis Plans con't

- Sample Specimens *May* be Available for Evaluation at Other Facilities
- Pre and Post Test Bore Castings were Prepared by ATC
- Post Test Borescope Video was Prepared by ATC

Future Developments

- Trade-Off Studies for Liner Materials
 Costs
 Erosion Resistance
 Hardness
- Large Bore Guntube Problems
 Rifling Design
 Partial Clads
 Autofrettage
 Fixturing

Future Developments

TPL Inc. Seeks Partners for SBIR Phase III Program(s) for Insertion of this Technology into Current and Future Gun Systems ...

...the technology is here ...

...and IT WORKS!

